π-(exo-2-Acetoxybenzonorbornenyl)-exo-tricarbonylchromium

By I.F.Taylor Jr, E.A.H. Griffith and E. L. Amma
Department of Chemistry, University of South Carolina, Columbia, South Carolina 29208, U.S.A.

(Received 8 September 1975; accepted 10 October 1975)

Abstract

Monoclinic, $P 2_{1} / a, a=21 \cdot 898$ (7), $b=$ 10.428 (7), $c=6.911$ (4) $\AA, \beta=102 \cdot 2$ (1) $)^{\circ}, \mathrm{CrC}_{16} \mathrm{O}_{5} \mathrm{H}_{14}$, $M=338.3, Z=4, D_{o}=D_{c}=1.46 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda=0.71068 \AA$, $T=23(2){ }^{\circ} \mathrm{C}, \mu(\mathrm{Mo} K \alpha)=7 \cdot 14 \mathrm{~cm}^{-1}$. The structure consists of isolated molecules of the geometric configuration indicated by the title with no unusual intermolecular interactions.

Introduction. In the controversy over the detailed mechanism of solvolysis of benzonorbornenyl sulfonates (Bly \& Strickland, 1970; Wells \& Trahanovsky, 1970) a necessary prelude to the discussion of the mechanism is the knowledge of which of the four possible geometrical isomers is actually under investigation. If the geometry of a particular isomer is established by X-ray crystallography the geometry of all the others can be related by chemical means (Bly, Strickland, Swindell \& Veazey, 1970). The sulfonates themselves are not amenable to single-crystal structure analysis, but an acetoxy derivative readily crystallized and proved to be a tractable problem. We wish to report the details here of the π-(exo-2-acetoxybenzonorbornenyl)-exotricarbonylchromium structure determination and show that the stereochemistry indicated as the 2-OMS is correct (Bly \& Strickland, 1970; Wells \& Trahanovsky, 1970). A preliminary communication appeared elsewhere (Lüth, Taylor \& Amma, 1970).

Crystals were generously supplied by Professor R. S. Bly. The needle (symmetry axis) crystals were coated with hydrocarbon grease and sealed in Lindemann capillaries for diffraction studies. The space group and preliminary cell dimensions were determined from Weissenberg and precession photographs. Accurate cell parameters were obtained from a least-squares fit of the χ, φ, and 2θ diffractometer angles for 11 accurately centered general reflections. Systematic absences: $h 0 l$, $h=2 n+1 ; 0 k 0, k=2 n+1$.

Intensity data for 2255 independent reflections were collected from a crystal $0.12 \times 0.06 \times 0.54 \mathrm{~mm}$ on a Picker card-controlled automatic diffractometer to a maximum 2θ value of $65^{\circ}(\theta-2 \theta$ scan, scan width $=$ 0.70°, scan speed $\left.=0.00833^{\circ} \mathrm{s}^{-1}\right)$. Background counts were made for 20 s each (B_{1} and B_{2}) at $\pm 0.35^{\circ} 2 \theta$ of peak maximum. Reflections were considered absent if the integrated intensity was less than twice the estimated σ of background, $\left[(2 \cdot 075)^{2}\left(B_{1}+B_{2}\right)\right]^{1 / 2} ; 1057$ reflections were retained by this criterion. A standard peak was measured after every ten reflections to monitor instrument stability and crystal decomposition. In general, the variation in intensity between consecutive standard peaks was less than a standard deviation of $I_{\text {(net) }}$ where $\sigma\left[I_{\text {(net) }}\right]=\left[I_{\text {(scan) }}-(2 \cdot 075)^{2}\left(B_{1}+B_{2}\right)\right]^{1 / 2}$ and the total variation during data collection was 2σ. The take-off angle, source-to-crystal distance, and crystal-

Table 1. Final positional and thermal parameters

	x	y	z	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
Cr	$0 \cdot 1776$ (1)	0.2631 (3)	0.0817 (4)	$12 \cdot 9$ (7)	82 (3)	166 (7)	-4(2)	9 (2)	7 (5)
$\mathrm{O}(1)$	-0.0390 (5)	$0 \cdot 262$ (1)	$0 \cdot 446$ (2)	17 (3)	107 (17)	264 (37)	-3 (7)	34 (9)	-8(23)
$\mathrm{O}(2)$	-0.0945 (7)	0.080 (2)	0.435 (3)	30 (5)	94 (20)	440 (59)	-10 (8)	65 (13)	-40 (28)
$\mathrm{O}(3)$	0.2288 (8)	$0 \cdot 470$ (2)	0.371 (2)	35 (5)	120 (22)	328 (55)	- 14 (9)	8 (13)	-94 (28)
$\mathrm{O}(4)$	$0 \cdot 3039$ (7)	0.239 (2)	-0.028 (3)	24 (4)	212 (27)	487 (58)	- 17 (11)	71 (13)	-35 (38)
$\mathrm{O}(5)$	$0 \cdot 1412$ (9)	0.472 (2)	-0.221 (3)	45 (6)	162 (27)	336 (59)	-22 (10)	-23 (15)	104 (32)
C(1)	0.0607 (8)	0.289 (2)	0.351 (3)	14 (5)	114 (27)	225 (57)	2 (8)	22 (13)	47 (29)
C(2)	0.0021 (8)	$0 \cdot 195$ (2)	0.333 (3)	14 (5)	116 (26)	239 (63)	-2 (8)	34 (14)	-19 (29)
C(3)	-0.0285 (8)	$0 \cdot 192$ (2)	$0 \cdot 105$ (3)	14 (5)	132 (28)	224 (60)	-9 (9)	25 (14)	14 (29)
C(4)	0.0163 (8)	$0 \cdot 286$ (2)	0.013 (3)	12 (5)	93 (24)	167 (47)	-1 (8)	3 (12)	7 (25)
C(5)	$0 \cdot 1028$ (9)	$0 \cdot 132$ (2)	-0.090 (3)	16 (5)	86 (23)	221 (57)	-6 (8)	23 (14)	11 (28)
C(6)	$0 \cdot 159$ (1)	0.058 (2)	-0.010 (4)	20 (6)	50 (22)	344 (79)	-14(9)	22 (17)	-30 (30)
C(7)	$0 \cdot 187$ (1)	0.060 (2)	0.197 (3)	17 (6)	80 (25)	237 (68)	-6 (9)	8 (15)	50 (30)
C(8)	$0 \cdot 1589$ (9)	0.138 (2)	0.332 (3)	16 (5)	70 (22)	280 (62)	-3 (8)	21 (14)	37 (30)
C(9)	0.0337 (9)	0.387 (2)	0.179 (3)	22 (6)	68 (21)	173 (53)	1 (8)	-1 (13)	-7 (27)
$\mathrm{C}(10)$	$0 \cdot 1045$ (7)	$0 \cdot 210$ (2)	$0 \cdot 248$ (2)	9 (4)	83 (22)	137 (48)	0 (7)	6 (11)	12 (23)
C(11)	0.0771 (8)	$0 \cdot 207$ (2)	$0 \cdot 044$ (2)	17 (5)	76 (22)	110 (49)	-9 (7)	16 (12)	-11 (22)
C(12)	-0.088 (1)	$0 \cdot 190$ (3)	0.478 (3)	20 (6)	161 (35)	109 (52)	-8(11)	3 (13)	-2 (31)
C(13)	-0.1338(9)	$0 \cdot 274$ (2)	0.567 (3)	20 (6)	159 (32)	303 (62)	3 (11)	46 (15)	-20 (39)
C(14)	$0 \cdot 210$ (1)	0.389 (2)	0.259 (3)	13 (6)	112 (29)	234 (65)	-2 (9)	12 (15)	9 (35)
C(15)	$0 \cdot 255$ (1)	0.251 (2)	0.015 (3)	29 (6)	72 (23)	229 (52)	-10 (12)	28 (15)	-34 (33)
C(16)	$0 \cdot 156$ (1)	0.391 (2)	-0.103 (3)	23 (7)	120 (31)	226 (68)	-20 (11)	-5 (16)	-26 (36)

to-counter distance were $3.7^{\circ}, 18 \mathrm{~cm}$, and 23 cm , respectively. The receiving aperature at the counter was $6 \times 8 \mathrm{~mm}$. The counting rate never exceeded 5000 counts and no attentuators were used. No corrections

Table 2. Bond distances (\AA) and bond angles $\left(^{\circ}\right)$

Cr-ring center	1.73 (3)	$\mathrm{C}(14)-\mathrm{Cr}-\mathrm{C}(15)$	88.6 (9)
$\mathrm{Cr}-\mathrm{C}(14)$	1.83 (2)	$\mathrm{C}(14)-\mathrm{Cr}-\mathrm{C}(16)$	$87 \cdot 1$ (8)
$\mathrm{Cr}-\mathrm{C}(15)$	1.85 (2)	$\mathrm{C}(15)-\mathrm{Cr}-\mathrm{C}(16)$	89.7 (9)
$\mathrm{Cr}-\mathrm{C}(16)$	$1 \cdot 84$ (3)	$\mathrm{O}(4)-\mathrm{C}(15)-\mathrm{Cr}$	$178 \cdot 3$ (21)
		$\mathrm{O}(3)-\mathrm{C}(14)-\mathrm{Cr}$	178.3 (19)
C(5)-C(6)	$1 \cdot 47$ (3)	$\mathrm{O}(5)-\mathrm{C}(16)-\mathrm{Cr}$	179.1 (18)
C(5)-C(11)	$1 \cdot 42$ (2)		
$\mathrm{C}(6)-\mathrm{C}(7)$	$1 \cdot 43$ (3)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$120 \cdot 7$ (19)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.46 (3)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$120 \cdot 3$ (18)
$\mathrm{C}(8)-\mathrm{C}(10)$	$1 \cdot 42$ (2)	$\mathrm{C}(7)-\mathrm{C}(8)--\mathrm{C}(10)$	$117 \cdot 3$ (18)
$\mathrm{C}(10)-\mathrm{C}(11)$	1.41 (2)	$\mathrm{C}(8)-\mathrm{C}(10)-\mathrm{C}(11)$	$122 \cdot 4$ (17)
		$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(5)$	121.7 (17)
$\mathrm{C}(10)-\mathrm{C}(1)$	$1 \cdot 55$ (2)	$\mathrm{C}(11)-\mathrm{C}(5)-\mathrm{C}(6)$	$117 \cdot 5$ (18)
$\mathrm{C}(11)-\mathrm{C}(4)$	$1 \cdot 55$ (2)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(4)$	$107 \cdot 4$ (14)
$\mathrm{C}(1)-\mathrm{C}(9)$	1.59 (2)	$\mathrm{C}(5)-\mathrm{C}(11)-\mathrm{C}(4)$	$130 \cdot 7$ (16)
$\mathrm{C}(4)-\mathrm{C}(9)$	$1 \cdot 55$ (2)	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(1)$	$107 \cdot 3$ (14)
$\mathrm{C}(1)-\mathrm{C}(2)$	$1 \cdot 60$ (2)	$\mathrm{C}(8)-\mathrm{C}(10)-\mathrm{C}(1)$	129.9 (16)
$\mathrm{C}(4)-\mathrm{C}(3)$	$1 \cdot 61$ (2)	$\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{C}(2)$	101.4 (15)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.58 (3)	$\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{C}(9)$	99.7 (14)
$\mathrm{C}(2)-\mathrm{O}(1)$	$1 \cdot 49$ (2)	$\mathrm{C}(9)-\mathrm{C}(1)-\mathrm{C}(2)$	99.9 (14)
$\mathrm{O}(1)-\mathrm{C}(12)$	$1 \cdot 36$ (2)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$104 \cdot 8$ (14)
$\mathrm{C}(12)-\mathrm{C}(13)$	$1 \cdot 56$ (3)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(1)$	$103 \cdot 4$ (14)
$\mathrm{C}(12)-\mathrm{O}(2)$	$1 \cdot 19$ (2)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{O}(1)$	$110 \cdot 8$ (15)
		$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$102 \cdot 5$ (14)
$\mathrm{C}(14)-\mathrm{O}(3)$	$1 \cdot 17$ (2)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(9)$	$101 \cdot 6$ (15)
$\mathrm{C}(15)-\mathrm{O}(4)$	$1 \cdot 18$ (2)	$\mathrm{C}(9)-\mathrm{C}(4)-\mathrm{C}(11)$	$101 \cdot 1$ (13)
$\mathrm{C}(16)-\mathrm{O}(5)$	$1 \cdot 17$ (3)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(11)$	101.2 (14)
		$\mathrm{C}(4)--\mathrm{C}(9)-\mathrm{C}(1)$	96.4 (14)
$\mathrm{Cr}-\mathrm{C}(5)$	$2 \cdot 26$ (2)	$\mathrm{C}(2)-\mathrm{O}(1)-\mathrm{C}(12)$	113.9 (15)
$\mathrm{Cr}-\mathrm{C}(6)$	2.24 (2)	$\mathrm{O}(1)-\mathrm{C}(12)-\mathrm{O}(2)$	$123 \cdot 8$ (21)
$\mathrm{Cr}-\mathrm{C}(7)$	2.26 (2)	$\mathrm{O}(1)-\mathrm{C}(12)-\mathrm{C}(13)$	$110 \cdot 5$ (20)
$\mathrm{Cr}-\mathrm{C}(8)$	2.27 (2)	$\mathrm{O}(2)-\mathrm{C}(12)-\mathrm{C}(13)$	$125 \cdot 6$ (21)
$\mathrm{Cr}-\mathrm{C}(10)$	$2 \cdot 23$ (2)		
Cr-C(11)	2.24 (2)		
$\mathrm{Cr}-\mathrm{C}(1)$	3.48 (2)		
$\mathrm{Cr}-\mathrm{C}(4)$	$3 \cdot 47$ (2)		
$\mathrm{Cr}-\mathrm{C}(9)$	$3 \cdot 60$ (2)		
C(9)--C(14)	$3 \cdot 78$ (3)		
$\mathrm{C}(9)-\mathrm{C}(16)$	$3 \cdot 62$ (3)		
Cr-plane defined by $\mathrm{O}(3), \mathrm{O}(4), \mathrm{O}(5) 1.77$ (3).			

Fig. 1. An ORTEP drawing of the π-(exo-2-acetoxybenzonor-bornenyl)-exo-tricarbonylchromium molecule with notation consistent with text. No H atoms are shown for reasons of simplicity. Thermal ellipsoids are scaled at 50% probability.

Table 3. R.m.s. displacements along principal axes of thermal ellipsoids (\AA)

	1	2	3
Cr	$0 \cdot 168$ (5)	$0 \cdot 194$ (4)	$0 \cdot 219$ (5)
$\mathrm{O}(1)$	$0 \cdot 167$ (20)	0.240 (20)	$0 \cdot 259$ (19)
$\mathrm{O}(2)$	$0 \cdot 208$ (23)	$0 \cdot 220$ (24)	$0 \cdot 344$ (22)
$\mathrm{O}(3)$	0.183 (26)	0.298 (22)	0.324 (23)
$\mathrm{O}(4)$	$0 \cdot 167$ (24)	0.321 (24)	0371 (24)
$\mathrm{O}(5)$	0213 (26)	0.271 (24)	$0 \cdot 410$ (24)
C(1)	$0 \cdot 166$ (32)	$0 \cdot 204$ (29)	$0 \cdot 274$ (29)
C(2)	$0 \cdot 142$ (37)	$0 \cdot 236$ (28)	$0 \cdot 263$ (28)
C(3)	$0 \cdot 153$ (35)	$0 \cdot 232$ (30)	$0 \cdot 276$ (29)
C(4)	$0 \cdot 162$ (34)	$0 \cdot 202$ (27)	$0 \cdot 228$ (29)
C(5)	$0 \cdot 166$ (32)	$0 \cdot 225$ (30)	$0 \cdot 232$ (30)
C(6)	$0 \cdot 136$ (40)	$0 \cdot 228$ (32)	$0 \cdot 286$ (32)
C(7)	$0 \cdot 167$ (33)	0.199 (33)	0.269 (30)
C(8)	$0 \cdot 164$ (33)	$0 \cdot 201$ (32)	0.265 (28)
C(9)	$0 \cdot 186$ (31)	0.196 (31)	0.247 (29)
$\mathrm{C}(10)$	$0 \cdot 147$ (35)	0.176 (30)	0.217 (28)
$\mathrm{C}(11)$	$0 \cdot 150$ (35)	0.174 (30)	$0 \cdot 225$ (27)
$\mathrm{C}(12)$	$0 \cdot 157$ (37)	$0 \cdot 218$ (32)	0.301 (33)
C(13)	$0 \cdot 165$ (32)	$0 \cdot 278$ (28)	0.301 (30)
C(14)	$0 \cdot 170$ (38)	$0 \cdot 230$ (32)	0.251 (33)
$\mathrm{C}(15)$	$0 \cdot 179$ (34)	$0 \cdot 221$ (31)	$0 \cdot 275$ (29)
C(16)	$0 \cdot 168$ (37)	$0 \cdot 255$ (33)	0.291 (32)

Fig. 2. An $O R T E P$ packing diagram of the molecule in Fig. 1. The unit-cell boundary is outlined. Thermal ellipsoids as in Fig. 1.
were made for absorption. The usual Lorentz-polarization corrections were applied and the intensities reduced to structure factors.

The crystal structure was solved by routine heavyatom methods in which the Cr atom was located from the three-dimensional Patterson function, and the remaining non-hydrogen atoms were located from electron density maps. The function minimized in the fullmatrix least-squares refinement was $\sum\left(F_{o}-F_{c}\right)^{2}$ with unit weights. Scattering factors for $\mathrm{Cr}, \mathrm{C}, \mathrm{O}$ were from Cromer \& Waber (1965) and the effects of anomalous dispersion for Cr (Cromer, 1965) were included by additions to F_{c}. Isotropic temperature factor refinement converged to a conventional R value of $0 \cdot 103$. Full anisotropic refinement for all atoms (excluding H atoms) yielded a final R and weighted R of 0.0692 and 0.0755 , respectively. A final difference Fourier map showed no unusual features.* Final atomic coordinates and thermal parameters are given in Table 1. Interatomic distances, angles, and errors are listed in Table 2 and r.m.s. displacements, in Table 3.

Discussion. The structure is made up of discrete molecules with no unusual intermolecular distances, Fig. 2, nor unexpected molecular packing features. A detailed representation of an isolated molecule with nomenclature is in Fig. 1. The stereochemistry is exo-tricarbonylchromium and exo-acetoxy. The orientation of the chromium tricarbonyl fragment is such that the C atoms of the benzene ring are in a staggered configuration relative to the carbonyl groups. This is the same configuration that has been found in benzenechromium tricarbonyl (Rees \& Coppens, 1972; Bailey \& Dahl, 1965a) hexamethylbenzenechromium tricarbonyl (Bailey \& Dahl, 1965b) phenanthrenechromium tricarbonyl (Deuschl \& Hoppe, 1964; Muir \& Ferguson, 1968) naphthalenechromium tricarbonyl (Kunz \& Nowacki, 1967). However, an eclipsed configuration is found in methylbenzoatechromium tricarbonyl (Carter, McPhail \& Sim, 1967). The molecule, excluding the acetate group, has an approximate mirror plane of symmetry passing through $\mathrm{O}(4), \mathrm{C}(15), \mathrm{Cr}, \mathrm{C}(9)$ and bisecting the $\mathrm{C}(6)-\mathrm{C}(7), \mathrm{C}(11)-\mathrm{C}(10)$ and $\mathrm{C}(3)-\mathrm{C}(2)$ bonds. The $\mathrm{Cr}-\mathrm{C}$ and $\mathrm{C}-\mathrm{O}$ distances within the $\mathrm{Cr}(\mathrm{CO})_{3}$ entity are normal. The $\mathrm{Cr}-\mathrm{C}$ ring distances are as expected from results of similar compounds mentioned above. The benzene ring is planar, well within experimental error ($\pm 0.01 \AA$). All other distances and angles are more or less normal.
The results of the torsional angle calculations suggested by Altona \& Sundaralingam (1970) are shown

* A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 31452 (7 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.

Table 4. Torsional angles (${ }^{\circ}$)

Saturated five-membered ring			Unsaturated five-membered ring		
Bond	A\&S* notation	Angle	Bond	A\&S* notation	
$\mathrm{C}(1)-\mathrm{C}(2)$	a_{R}	33 (1)	$\mathrm{C}(1)-\mathrm{C}(10)$	a_{L}	32 (1)
$\mathrm{C}(2)-\mathrm{C}(3)$	b_{R}	0 (1)	$\mathrm{C}(10)-\mathrm{C}(11)$	b_{L}^{\prime}	1 (1)
$\mathrm{C}(3)-\mathrm{C}(4)$	$c_{\text {R }}$	35 (1)	$\mathrm{C}(11)-\mathrm{C}(4)$	c_{L}^{\prime}	31 (1)
$\mathrm{C}(4)-\mathrm{C}(9)$	d_{k}	56 (1)	$\mathrm{C}(4)-\mathrm{C}(9)$	${ }_{\text {d }}^{L}$	49 (1)
$\mathrm{C}(9)-\mathrm{C}(1)$	$e_{\text {R }}$	55 (1)	$\mathrm{C}(9)-\mathrm{C}(1)$	e_{L}^{L}	49 (1)

Six-membered boat ring

$\mathrm{C}(1)-\mathrm{C}(2)$	f_{B}	$69(1)$
$\mathrm{C}(3)-\mathrm{C}(4)$	g_{B}	$69(1)$
$\mathrm{C}(1)-\mathrm{C}(10)$	f_{B}^{B}	$70(1)$
$\mathrm{C}(4)-\mathrm{C}(11)$	g_{B}	$73(1)$

* Notation introduced by Altona \& Sundaralingam (1970) in their compilation of torsional angles found in existing structures of camphanes, norbornenes, and substituted norbornane skeletons.
in Table 4. As found in other norbornene structures we do not find a pseudo rotation or twist of the two fused rings relative to each other; in fact, they superimpose. Not only is the benzene ring planar, but also atoms $C(1)$ and $C(4)$ deviate from this plane by not more than $0 \cdot 13$ (1) \AA.

It appears that neither of the two exo substituents causes distortion of the norbornene system.

We gratefully acknowledge partial support from NSF.

References

Altona, C. \& Sundaralingam, M. (1970). J. Amer. Chem. Soc. 92, 1995-1999.
Bailey, M. F. \& Dahl, L. F. (1965a). Inorg. Chem. 4, 1314-1319.
Bailey, M. F. \& Dahl, L. F. (1965b). Inorg. Chem. 4, 1298-1306.
Bly, R. S. \& Strickland, R. C. (1970). J. Amer. Chem. Soc. 92, 7459-7461.
Bly, R. S., Strickland, R. C., Swindell, R. T. \& Veazey, R. L. (1970). J. Amer. Chem. Soc. 92, 3722-3729.

Carter, O. L., McPhail, A. T. \& Sim, G. A. (1967). J. Chem. Soc. (A), pp. 1619-1626.
Cromer, D. T. (1965). Acta Cryst. 18, 17-23.
Cromer, D. T. \& Waber, J. T. (1965). Acta Cryst. 18, 104-109.
Deuschl, H. \& Hoppe, W. (1964). Acta Cryst. 17, 800-804.
Kunz, V. \& Nowacki, W. (1967). Helv. Chim. Acta, 50, 1052-1059.
lüth, H., Taylor, I. F. \& Amma, E. L. (1970). Chem. Commun. p. 1712.
Muir, K. W. \& Ferguson, G. (1968). J. Chem. Soc. (B), pp. 467-476.
Rees, B. \& Coppens, P. (1972). J. Organometal. Chem. 42, C102-C104.
Wells, D. K. \& Trahanovsky, W. S. (1970). J. Amer. Chem. Soc. 92, 7461-7463.

